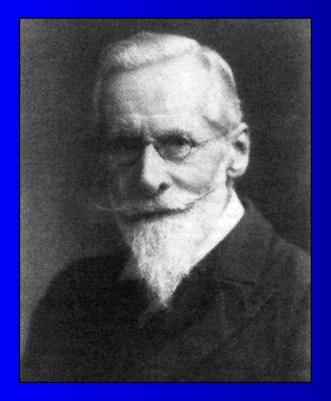

Radiation Physics and Safety

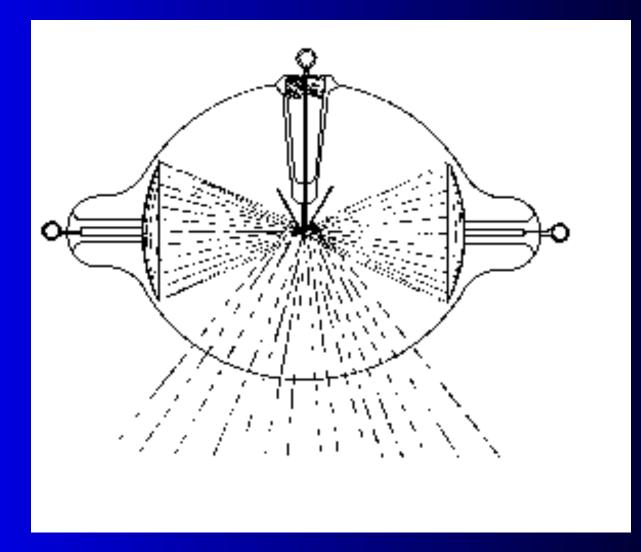
John Gough, CHP Radiation Safety Officer



Outline and Objective

- A Brief History
- Basic Atomic Physics
- What is Radiation?
- What is Radiation Safety?
- Terminology
- Background Radiation Levels

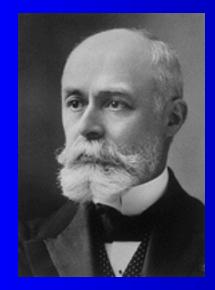
- Radiation Exposure from Common Activities
- Health Risks Associated with Radiation Exposure
- Radiation Dose Limits and Recommendations
- Radiological Emergencies and Response
- Contact Numbers


X-ray "Pre-history"

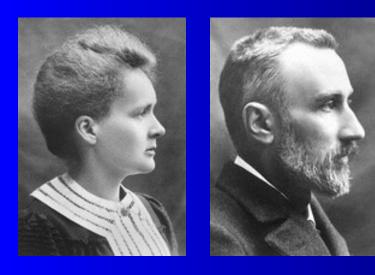
1869 William Crookes notes fogging of photographic plates in his laboratory and complains of defective packaging.

This is caused by x-rays, which were unknown at the time and produced by Crookes Tubes in the laboratory.

Crookes Tube


Roentgen's Discovery

- On November 8, 1895, Prof. W. Roentgen noted that the discharge from a Crookes tube or similar CRT (Cathode Ray Tube) resulted in fluorescence from a nearby paper screen covered with barium platinocyanide.
- Exhaustive research resulted in a paper published in December 1895 describing the unusual penetrating properties of this radiation.

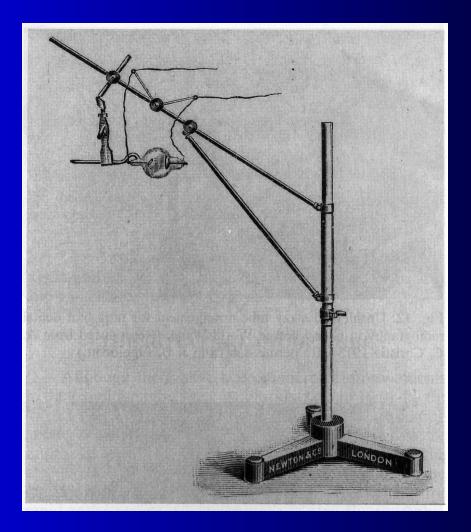

Fig. 1. X-ray image of a hand, believed to be that of Frau Roentgen, made by W. C. Roentgen on 22 December 1895. (Reproduced from *The Rays* by R. and E. Brecher with permission from The American College of Radiology Foundation.)

Frau Roentgen's Hand

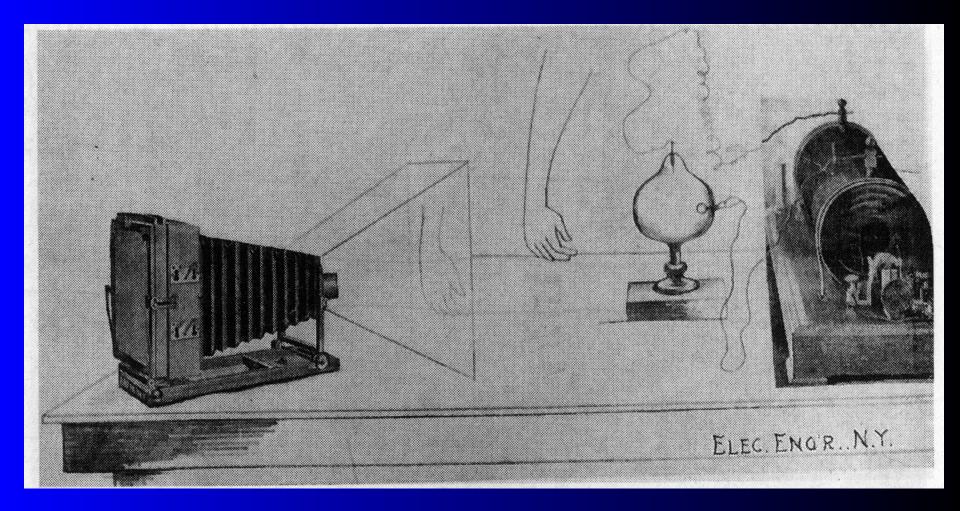
Radioactivity & Henri Becquerl

Set about to find a natural source of these mysterious "x-rays" discovered by Roentgen.
 Discovered in March 1896 that a sample of natural uranium sulfate emitted some form of energy that would also fog photographic film without the addition of external energy.

Marie & Pierre Curie


- Isolated Radium from a sample of Uranium in 1898
- Verified that when sufficient quantities were in contact with the skin it would cause a burn and then a more serious wound.
- Pioneered the use of Radium for radiotherapeutic treatment of tumors and other malignancies

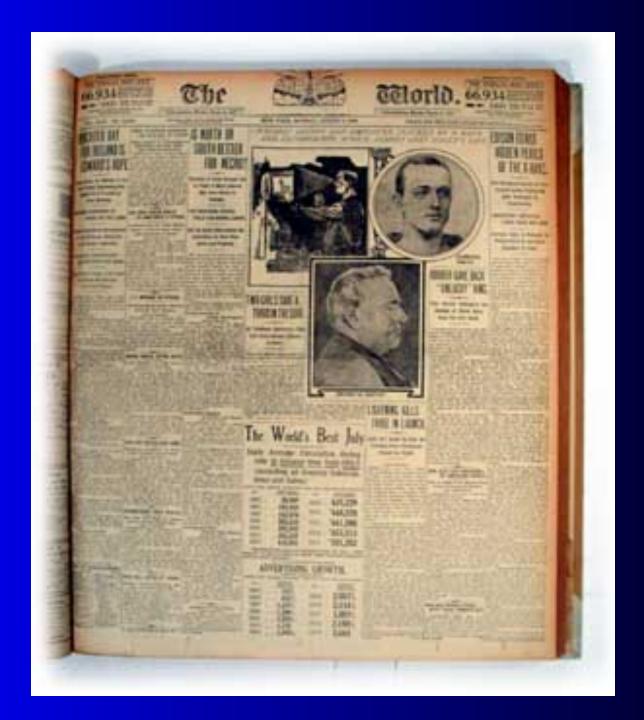
Initial Use of Radiation


X-rays

- Medical (diagnostic and therapeutic)
- Research
- Commercial
- Radioactive Materials
 - Medical
 - Consumer
 - The "magic" of Radium

Early Portable X-ray Machine

X-ray Fluoroscope



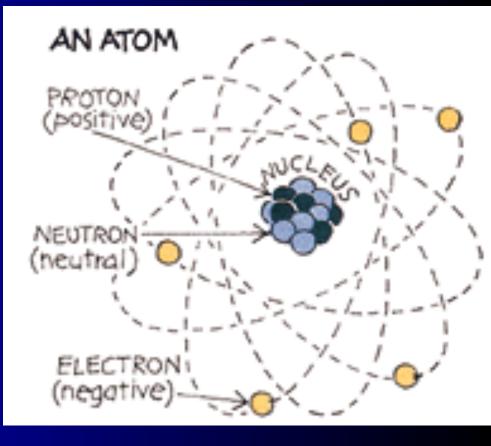
Radium Product

Injuries Reported

- In May 1896 T. Edison reports that eye injuries may be the result of x-ray exposures.
- Skin reddening also appears on both staff and patients.
- Early injuries often ignored because of the latent effect of radiation.
- Physicist and physicians also refuse to believe that x-rays were hazardous.

Edison Fears Hidden Perils of X-rays

- From New York World, August 3, 1903 page 1.
- Laboratory Employee Loses Hand and Arm
- The circumstances involved the intentional exposure of arms and hands to fluoroscopic resulting in significant injury.
- Edison quits experimenting with x-rays shortly after Dally's death.

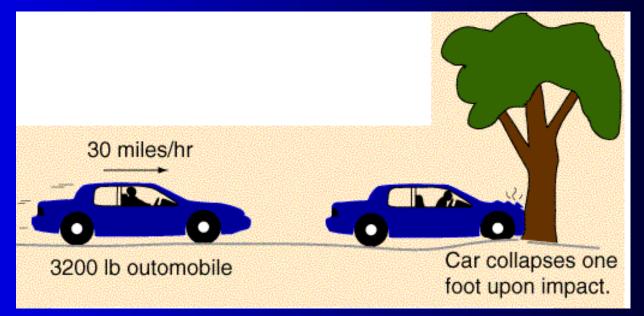

First X-ray Attributed Fatality -October 1904

- Clarence M. Dally, a glass blower at the Thomas Edison's Menlo Park Lab, is the first person known to have been killed by x-ray exposure.
- He was severely burned in 1896, he still worked with x-rays until 1898.

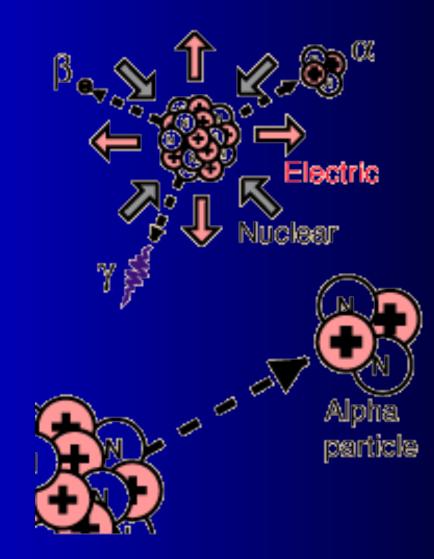
The Atom

Nucleus

- Protons
- Neutrons
- Stability of the nucleus determined by the number of neutrons and protons
- Extra-nuclear
 - Electrons


Radioactivity

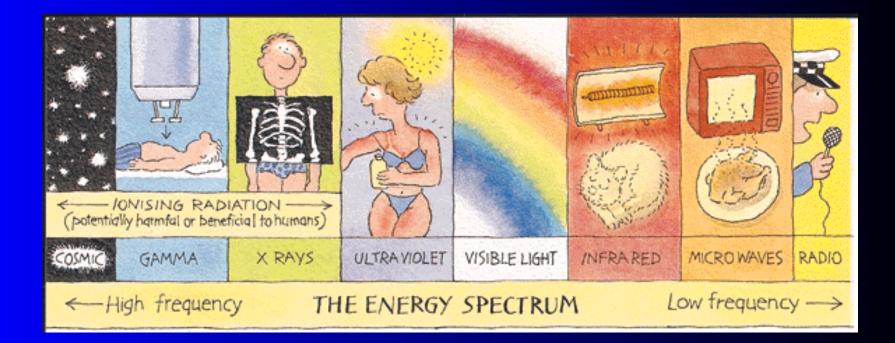
- The transformation of an atomic nucleus from an unstable isotope to a stable isotope
- The instability is due to either too few or too many neutrons in the nucleus of the atom
- The transformation is usually accompanied by the emission of energy which is generally termed radiation.


What is Radiation?

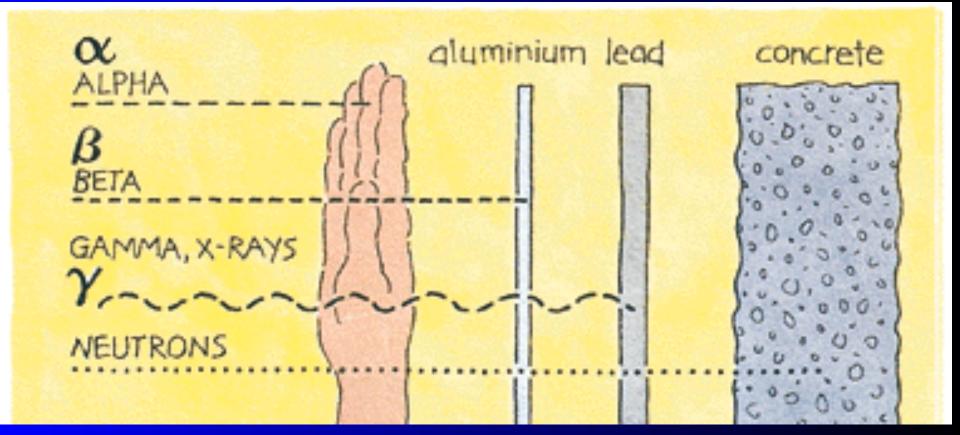
Transfer of energy from one location to another

Types of Radiation

Types of Radiation



The Electromagnetic Spectrum


lonizing vs. Non-Ionizing

Non-lonizing Radiation Transfers energy by heat conduction No chemical effects

Ionizing Radiation

- Has the ability to induce chemical changes
- Transfers very little energy relative to biological damage

Radiation Penetration

Radiation Safety

- To insure that dose to patients, employees and visitors are kept as low as reasonably achievable.
- Does not mean no dose or zero dose just "safe" dose.

Absorbed Dose

- A measure of the amount of energy absorbed by an object from ionizing radiation.
- Radiation Absorbed Dose (Rad)
- S.I. Unit Gray (Gy)

Exposure

- A measure of the ionizing function of radiation.
 Measures the amount of electrical charge created by x-rays and gamma rays up to 3 MeV of energy.
- Roentgen = 2.54 x 10⁻⁴ Couloumbs / kg

Dose Equivalent

- A measure of the biological effectiveness (the amount of biological damage) of a given type of radiation.
- Determined by taking the absorbed dose and multiplying it by an adjustment factor for biological damage
- Rem (Roentgen Equivalent Man)
- S.I. Unit Sievert (Sv)

Activity

- A measure of the number of transformations occurring in a given amount of material.
- Is not a complete indication of the radiation hazard
- Curie (3.7 x 10¹⁰ disintegrations per second)
- S.I. Unit Becquerel (Bq) 1 disintegration per second

Radiation & life

1,500 AD

1800 AD

WHAT'S

ALPHA, BETA

& GAMMA

RAYS?

100 AD

01!!

WHAT'S THE

RADIATION

LEVEL LIKE

IN A.D.?

5.000 80

50,000 80

ASK

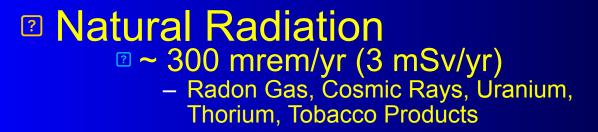
THE BLOKE

BEHIND -

HE'S GREEK!

MUCH

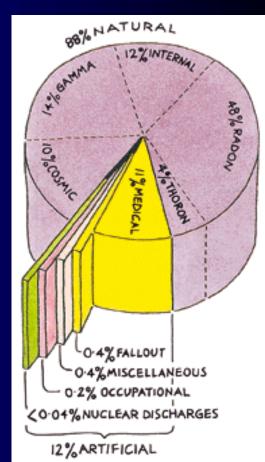
THE SAME


AS B.C.

MATE !!

"Life on earth has developed with an ever present background of radiation. It is not something new, invented by the wit of man; radiation has always been there."

Eric J Hall, Professor of Radiology, College of Physicians and Surgeons, Columbia University, New York. "Radiation and Life".


Sources of Background Radiation

Artificial Radiation

2 ~ 60 mrem/yr (0.6 mSv/yr)

 Diagnostic x-rays, nuclear médicine studies, consumer products, nuclear weapons fallout

Radiation Detectors

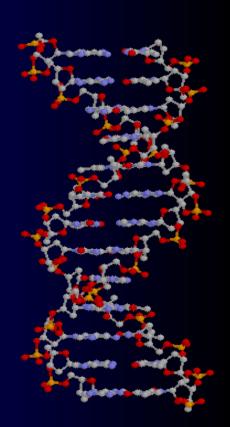
Radiation Exposure from Common Activities

Average US smoker - 16,000 mrem/yr to bronchial epithelia

CT - 100 to 5000 mrem/exam

Chest x-ray 8 to 10 mrem

Transcontinental flight from NY to LA 2 to 4 mrem round trip



Astronaut in space for 1 month, 15,000 mrem

Interaction of Radiation in the Body

- Direct interaction with DNA
- Free Radicals (FR): Ionized atoms and molecules
- At diagnostic energies (100 kVp) 95% of interactions of radiation in body generates FRs
- X-RAY + $H_2O \rightarrow H_2O^+$ or H_2O^*
 - ? H₂O, H₂O₂, H, OH

(hydrogen peroxide, FR's)

Biological Effects

Biological Effects

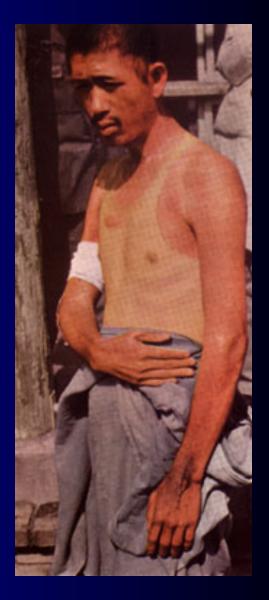
- Acute Radiation Effects (exposure to a high dose of radiation over a very short period of time).
- Delayed or Chronic Effects (exposure to low levels of radiation over a long period of time).

Acute Radiation Effects

Dose in rad

Effect

Blood count changes Physical Manifestations Bone marrow depression LD 50/30 dose 100% Lethal GI effect CNS effects



Effect	Dose (Gy)	Onset Time
Early transient erythem	a 2	hours
Temporary epilation	3	3 wks
Main Erythema	6	10 d
Permanent epilation	7	3 wk
Dry desquamation	10	4 wk
Invasive fibrosis	10	
Dermal atrophy	11	>14 wk
Telangiectasis	12	>52 wk
Moist desquamation	15	4 wk
Later erythema	15	6-10 wk
Dermal necrosis	18	>10 wk
Secondary ulceration	20	> 6 wk

Some examples of Acute Radiation Effects

Cancer Risk

- The Risk of cancer from exposure to radiation increase with increasing dose for doses above 10 rad.
- The risk from doses below 10 rad are postulated based on statistical analysis. There are no studies that can confirm or deny the effects of dose below 10 rad.

Cancer Risk

- Background cancer risk in the US is approximately 40%.
- 10 mrem of radiation exposure increases cancer risk by approximately 1 in 1,000,000.
- 1 chest x-ray is approximately 10 mrem.

1 in 1,000,000 risks

Driving your car 77 miles in 1999.

Driving a motorcycle 4.3 miles in 1999

Riding a bicycle 10 miles

Eating 1 TBSP of peanut butter.

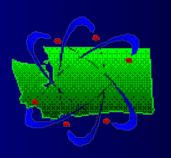
Risks from Everyday Activities

Activity Smoking 10 cigarettes/day Influenza Playing Soccer Hit by Lightling

Offshore oil and gas industry Coal Mining Construction Industry Agriculture Fatality/year 1 in 200 1 in 500 1 in 25,000 1 in 10,000,000

1 in 600 1 in 6,000 1 in 7,000 1 in 9,000

Typical Occupational Doses


Category

X-ray Technologist Nuclear Medicine Technologist Flight Crews Scientist Nurse Dentist Nuclear Power Plant

Annual Dose

96 mrem
95 mrem
170 mrem
7 mrem
24 mrem
70 mrem
552 mrem

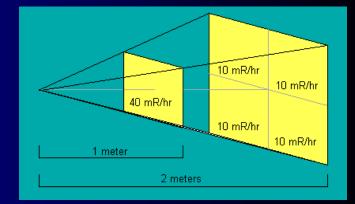
Dose Limits Washington DOH

Part of the Body

Whole Body (TEDE) Organ or Extremity Lens of the Eye Dose to Fetus (9 months) Annual Limit (mrem) 5,000 50,000 15,000 500

ALARA

- As Low As REASONABLY Achievable
- Reasonable measures are to be taken by facilities to reduce radiation exposure to workers to well below regulatory limits
- Lead Apron, thyroid shield, leaded glasses, appropriate distance when applicable


Radiation Protection -External

Time - minimize

Distance maximize

Shielding - lead aprons, lead bricks, etc.

Radiological Emergencies

Types of Radiological Events

Accidental Release

Radiological Dispersal Device (RDD) Nuclear Device

Accidental Releases

- Still (and hopefully) the most likely radiological event
 - Nuclear power plant release
 - Lost material either industrial sources or medical material
 - Shipping accidents
 - Etc.

Chernobyl

Radiological Dispersal Device

- Conventional explosive device surrounded by radioactive material.
- Radioactivity is generally not great enough to be of a significant hazard to personnel.
- Used primarily as a device to inspire terror and fear.
- The consensus isotopes that would be used are those commonly used for industrial radiography, medical therapy or sterilization

RDD Effects

Primary Effects

- Damage from the primary explosive
- Injuries related to the primary explosive
- Secondary Effects
 - Radiation Exposure from isotope (will generally not be enough to result in physical response)
 - Personnel contamination
 - Area Contamination
 - Fear Factor from potentially unknown radiation exposure

RDD Response

- Efforts will revolve around minimizing contamination, however medical emergencies will take precedence
- The spread of contamination is dependent on the following and hazard:
 - Amount of radioactivity
 - Physical form of material
 - Explosives used
 - Meteorological conditions
 - Type of radioactive material

Nuclear Device

Anything over a 100 ton yield – Hiroshima bomb was approximately 15 kilotons

- Results in significant radiological contamination of both the environment and victims
- Depending on the size of the weapon, those within 300 meters or so will receive not only lethal doses of radiation but also significant physical injuries

Nuclear Device

Primary Effects

- Physical Damage from detonation
- Shockwave
- Heat Wave (from 1000 meters for a small device up to several miles)
- Flash burns (individuals)
- Glass and other projectiles generated by the explosion
- Radiation and Radioactive Contamination

Nuclear Device

- Secondary Effects
 - Radiation Dose Syndrome Effect from surviving victims
 - Radioactive Contamination
 - High level radiation doses to rescue workers
 - Fallout and prolonged restriction of affected area due to radiation
 - Psychological Impact of Nuclear Weapon usage
- EMP can potentially damage electronic communication adding the logistical issues

Medical Treatments

Centered around providing supportive care.

Focus is on patient received radiation doses that are treatable (i.e. considered under 400-500 rad for mass casualties and 800 rad for limited victims)

Care is centered upon the prevention of infections and minimization of secondary effects.

Radiological Emergency Procedures

- Immediately contact the Radiation Safety Officer
 - Office 386-2723
 - Pager 405-7065
 - Home 367-0711
- All victims will arrive via the emergency department
- Washington DOH Hotline – 1-800-NUCLEAR

HEICS

- For hospitals, HEICS will be initiated.
- Incident Command with consultation of the Radiation Safety Office providing expert consultation and coordinating the individual performing environmental risk analysis.
- Radiation Dose Limits will be followed along with recommended action guides from the DOE and EPA.
- Monitoring with portable instruments, instant read dosimeters and film badges.

EPA Action Guidelines

Dose limit (whole Emergency Action Dose Guidelines
body)Activity Performed

- 5 rem
- 10 rem
- 25 rem
- >25 rem

- All Activities
- Protecting major property
- Lifesaving or protection of large populations
 - Lifesaving or protection of large populations. Only by volunteers who understand the risks.

DOE Dose Rate Recommendations

Dose Rate Recommended Actions

x2 Background Contaminated Persons
1 – 5 mR/h Hot Line (i.e. separate and decon)
0.001 – 10 R/h Work in Hot Zone (personnel)
10 R/h Turn Back (except for lifesaving)
200 R/h Turn Back (even for lifesaving)

Personnel Monitoring

- Film Badge Dosimeters

 No immediate read, will primarily be used in situations where immediate results are not required
- Pocket Dosimeters
 - Immediate read
 - Not as accurate as Film Badge Dosimeters

Summary

Radiation Exposure is a part of everyday life

- Physiological Effects from radiation do not occur at levels below the annual occupational dose limit
- There are two principal radiological events in the news today
 - Radiological Dispersal Device
 - Nuclear Device

Summary

- Generally speaking medical intervention should always take precedence over decontamination
- Radioactive contamination hazards are only of significant physiological concern with Nuclear Devices.
- In an emergency contact 206-NUCLEAR

Questions

John Gough, MS, CHP Rediction Safety Officer

- Radiation Safety Officer
- Swedish Medical Center
- 386-2723 (office)
- 405-7065 (pager)